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Abstract

Using analogue experiments we investigate how far the extensional strain estimated from an array of rigid boudins tracks the bulk extension
of the host rock. The quadratic elongations of boudinaged objects (lb) were compared with the corresponding bulk quadratic elongations in
physical models (lm) both for pure and simple shear. A noticeable difference occurs between the two, which depends on the aspect ratios of
initial object (Ro) and boudins (Rb), boudin types, and the nature of bulk deformation. For a given Ro, the difference is proportional to Rb

and tends to diminish with increasing Ro, when Rb is constant. The difference is normalized with the quadratic elongation measured from bou-
dins (lb) to define a departure factor dð ¼ lm � lb=lbÞ. d approaches a stable value with increasing lb. In pure shear the stable d for torn sym-
metric boudins is larger (>10�1) than that for asymmetric boudins, among which the planar type shows the departure close to 0. Boudins in pure
shear show d values smaller than that in simple shear. In case of simple shear, antithetic slip boudinage involves lower d values compared to
synthetic slip boudinage. Finite element models with elasto-viscous rheology also corroborate the experimental findings.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A line of work in structural geology develops new strain
gauges (e.g. Ramsay, 1967; Gay, 1968; Mitra, 1976; Lisle,
1979; Bons and Jessell, 1995; Ramsay and Lisle, 2000; Hogan
and Dunne, 2001; Treagus and Treagus, 2001; Lebit et al.,
2005). Many rocks contain rigid objects of finite dimensions,
e.g. elongate fossils, large mineral grains, layer-segments, that
undergo brittle fragmentation into boudins during deformation
(Ramberg, 1955). Boudins are potentially useful strain gauges
and rheological indicators, but the issue exists as to how closely
their deformation matches that of the host rock (Ramberg, 1955;
Ghosh and Ramberg, 1976; Hossain, 1979; Ferguson, 1981,
1987; Lloyd and Ferguson, 1981; Burg and Harrris, 1982;
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Mandal et al., 2000; Passchier, 2001; Passchier and Druguet,
2002; Lloyd and Condliffe, 2003; Treagus and Lan, 2004).

Theory and experiments show that boudinage within a duc-
tile matrix may occur either by tensile and/or shear fracturing
(e.g. Ramsay and Huber, 1983; Jordan, 1991; Ji and Zhao,
1993; Mandal et al., 1994, 2001). The initial fracture mecha-
nism and development control subsequent boudin geometry
(Ghosh and Ramberg, 1976; Mandal and Khan, 1991; Hanmer
and Passchier, 1991; Passchier and Druguet, 2002; Goscombe
and Passchier, 2003; Goscombe et al., 2004). A recent classifi-
cation of boudins (Goscombe et al., 2004) considers both their
initial geometry and kinematic behavior (Fig. 1). This classifi-
cation forms the framework for our analysis, as we consider the
effectiveness of boudins as strain gagues for the case of torn
boudins, and both synthetically and antithetically slipped dila-
tional and planar boudins.

As strain gauges, torn symmetric boudins can be restored to
the initial object length to determine finite extension, assuming
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Fig. 1. Types of boudins (after Goscombe et al., 2004) considered for the analysis.

Basal glass plate
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Pitch block
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(a) Pure shear model set up 

(b) Simple shear model set up 

Fig. 2. Schematic sketches of set-up for experimental boudinage under (a) pure shear; and (b) simple shear. Scale bar: 3 cm.



761N. Mandal et al. / Journal of Structural Geology 29 (2007) 759e773

Sy

m
m

et
ri

c 
bo

id
in

ag
e

(R
o=

6,
 R

b=
 2

) 
P

la
na

r 
as

ym
m

et
ri

c 
bo

id
in

ag
e

(R
o=

2.
4,

 R
b=

0.
4)

  

Initial model Deformed modelPure shear 

(a)

(b)

(c)

D
ila

ti
on

al
 a

sy
m

m
et

ri
c

bo
id

in
ag

e
(R

o=
6,

 R
b=

1)
  

Fig. 3. Boudinage structures in experimental models deformed in pure shear: (a) symmetric; (b) dilational asymmetric; and (c) planar asymmetric types. White

shade: wooden boudins, black shade: pitch (matrix). Rectangular boxes indicate the magnitude of bulk strain. Objects were initially oriented along the principal

extension direction. Scale bar: 1 cm.
little or no internal deformation of boudins (Ramsay, 1967;
Beach, 1979; Ferguson, 1981; Ramsay and Huber, 1983;
Ghosh, 1993). Asymmetric boudins may yield finite strains
from their rotation (Ramsay and Huber, 1987; Nur and Ron,
1987; Karmakar and Mandal, 1989; Ghosh, 1993). The
purpose of this paper is to assess accuracy of the finite strain
estimated from a row of rigid boudins for determining the
two-dimensional finite strain of the host rock. We estimate
the similarity from analogue and finite-element simulations
for both simple and pure shear type of bulk deformation.
The difference in extensional strains of a boudinaged object
and the host rock tends to vanish only when the objects are
infinitely extended across the boudin axis. However, in case
of objects with finite length the difference is likely to become
stable at a finite stage of deformation, which can be utilized to
improve the accuracy of bulk strain estimation.
2. Analogue experiments

Analogue physical experiments were performed with models
containing a rigid object (wood) placed within a pitch block
(21 cm � 16 cm � 4.5 cm) (cf. Mandal and Khan, 1991). The
wooden object was 1.5 cm thick, but its length and width were
varied between 6e10 cm and 1e2.5 cm, respectively. Boudins
were created by cutting the wooden strip in pieces with straight
cuts that were oriented at 45� or 90�. The segmented wooden
strip was then placed within the pitch block with the entire thick-
ness inside the pitch so that its surface remained at the level of
the pitch block. The interfaces between the rigid object and ma-
trix were adherent, allowing no slip during the deformation. The
pitch was visco-elastic, but mainly behaved as a viscous material
at room temperature (30 �C) and slow strain rates (in the order of
10�6/s). Its viscosity was about 5 � 105 Pa s.
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Fig. 4. Boudinage structures in experimental models deformed in sinistral simple shear. Scale bar: 1 cm.
Models were placed on a horizontal (0.5 cm thick) glass
plate with a film of commercial liquid soap to minimize model
to plate friction (Fig. 2). Models were deformed by pure shear or
simple shear on a hydraulically controlled horizontal platform,
containing two moving parallel rigid bars. For pure shear exper-
iments, the rigid bars were driven horizontally toward each
other at equal velocities. The model surface was covered with
a horizontal glass plate to inhibit the material flow in the vertical
direction, resulting in bulk extension in the orthogonal horizon-
tal direction. We placed two vertical glass plates, covering the
model thickness, in between the model and the driving bars,
and lubricated their surfaces with liquid soap for smooth flow
of pitch in the horizontal direction (Fig. 2a). For simple shear,
two wooden plates with rough surfaces were placed so that
the pitch remained firmly stuck to the plates. Models were
sheared by moving the two hydraulic bars in the parallel direc-
tions (Fig. 2b). The lateral faces of model were confined with
two parallel, guiding plates that also moved with the parallel
bars.

In our experiments we dealt with three types of boudins
(Fig. 1): (1) torn-symmetric; (2) dilational asymmetric; and
(3) planar asymmetric in both pure shear and simple shear
(Fig. 2). To develop no-slip boudinage structures in pure shear,
the initial cuts were made at a right angle to the long dimension
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Fig. 5. Calculations of quadratic elongation (l) for the three types of boudinage structure. lm: bulk quadratic elongation of model, lb: quadratic elongation of

boudinaged objects (see text for details).
of rectangular objects at an equal spacing, and the object was
oriented along the principal direction of bulk extension. During
pure shear, the rectangular segments were separated simulta-
neously from one another, forming torn symmetric boudins
(Fig. 3a). To simulate dilational and planar asymmetric struc-
tures in pure shear, the cuts were oriented at an angle of 45�

to the long dimension of object (Fig. 3b,c). Dilation rather
than planar slip dominated the kinematic behavior of boudins
with asymmetric faces for pure shear when the face spacing ex-
ceeded half of the boudin thickness. For simple shear, boudin-
age was simulated for the case where the line of boudins
occurred at 45� to the shear zone boundary and verging into
the shear direction (Fig. 4). Objects with cuts initially either or-
thogonal or at an angle of 45� to their long dimension (verging
in the shear direction) gave rise to synthetic-slip boudinage
(Fig. 4). To simulate antithetic-slip boudinage oblique cuts
were at an angle of 45� verging against the shear direction
(Fig. 4; cf. Passchier and Druguet, 2002; Goscombe et al.,
2004).

Following Ramsay’s (1967) method, we measured the ex-
tensional strain by length balancing of separated boudins
(Fig. 5) at successive stages of model deformation, which
will be described as boudinage strain. For planar and dilational
asymmetric boudins, the boudinage strain was determined by
measuring the distance between the opposite edges of boudin-
aged object in the bulk extension direction, and comparing it to
the initial line length.
3. Strain analysis

3.1. Approach

During an experiment, the length of a boudin array was
measured at successive stages of progressive deformation.
The finite quadratic elongation of object was determined,
say lb, for finite bulk extension of model, lm (cf. Ferguson,
1981) as in the following equations:

lb ¼
�

l0b
lb

�2

and lm ¼
�

l0m
lm

�2

ð1a;bÞ

where lb ¼ l1 þ l2 þ l3 þ l4 þ...
lb is the initial length of segmented object, where l1, l2,.. are

the lengths of individual segments. lb
0 is the length of object

following boudinage. lm is the initial distance between two
points far away from the object measured in the direction of
boudinaged object and lm

0 is distance between the two points
following deformation (Fig. 5). lb and lm for any segment of
a boudinage structure are likely to change at different rates,
as reflected from the drag of a set of marker lines drawn across
the objects in experiments (Fig. 6).

To study the difference we prepared a graph in lb � lm

space. lb versus lm variation would be represented by
a straight line with lb ¼ lm, if the stretching objects track
the bulk extension in the model. lb � lm plots indicate that
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Fig. 6. Successive stages of model deformation in pure shear experiments showing distortion patterns of lines perpendicular to the bulk extension direction

(horizontal). Scale bar: 1 cm.
the object strain does not follow the bulk extension at any
stage of deformation. The deflection from the lb ¼ lm line
can be described by a factor:

d¼ lm� lb

lb

ð2Þ

Using Eq. (2) a precise value of the actual extensional strain
in deformed rock can be obtained if the value of d is known.
Experimental investigations reveal that lb versus lm variations
and the corresponding d value, are functions of three factors:
(1) aspect ratio of object (Ro); (2) aspect ratio of boudins
(Rb); and (3) the type of boudinage, which may all be identified
in natural systems. In this study Ro and Rb are length parallel to
layering versus thickness ratios of object and individual bou-
dins respectively on a section perpendicular to the boudin
axis (Ghosh, 1993).
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3.2. Analysis with torn symmetric boudins

In experimental symmetric boudinage lb varies with lm,
maintaining a consistent difference from the lb ¼ lm line
(Fig. 7). The difference is larger for larger boudin aspect ratio
Rb (Fig. 7a), whereas it becomes small with increasing object
aspect ratio Ro (Fig. 7b,c). Calculated departure factor d varies
positively with lb, but has a tendency to attain a stable value
(Fig. 8). At small Rb (e.g. 1), the stable value is attained along
a gentle gradient after a large boudinage strain. On the other
hand, when Rb is large (say 3) the variation becomes steeper,
but there is a tendency of d to approach a stable value at rel-
atively lower boudinage strain. The stable value of d is directly
proportional to Rb, but inversely related to Ro (Fig. 8aec,
Table 1a). Evidently, boudinage in infinitely extended layers

1

1.5

2

2.5

3

3.5

4

Bulk Strain (λm)

B
ou

di
na

ge
 S

tr
ai

n 
(λ

b)

(b)

Rb = 1.0
Rb = 2.0

Rb = 4.0

Ro = 8

1

1.5

2

2.5

3

3.5

4

4.5

Bulk Strain (λm)

B
ou

di
na

ge
 S

tr
ai

n 
(λ

b)

(c)

Rb = 2.0 Rb = 2.5

Rb = 5.0

Rb = 1.0

Ro = 10

1

1.5

2

2.5

3

3.5

4

4.5

1 1.5 2 2.5 3 3.5 4 4.5

1 1.5 2 2.5 3 3.5 4 4.5

1 1.5 2 2.5 3 3.5 4

B
ou

di
na

ge
 S

tr
ai

n 
(λ

b)

(a)

Ro = 6

Rb = 1.0

Rb = 1.5
Rb = 2.0

Rb = 3.0

λb=λm

λb=λm

λb=λm

Bulk Strain (λm)

Symmetric boudinage structure

Fig. 7. Plots of (symmetric) boudinage strain (lb) versus bulk model strain (lm)

from physical experiments for pure shear. Initial aspect ratio Ro ¼ 6, 8, 10 in

(a), (b) and (c), respectively. Rb: Boudin aspect ratio. Solid lines show lb ¼ lm.
(comparable to objects with Ro ¼f) are thus likely to track
the bulk extension perfectly, and thereby show d ¼ 0.

In simple shear, torn-symmetric boudins developed only
when the aspect ratios of both boudins and object were large
(�4 and 8 respectively), and the cuts were at right angle to
the long axis of object (Fig. 4). They had stretching behaviour
similar to that in pure shear. However, the departure factor d in
simple shear is relatively high, and appears to have a larger
stable value (w0.7, Fig. 8d, Table 1b).

3.3. Analysis with dilational asymmetric boudins

Dilational asymmetric boudins show lb � lm variations as
a function of boudin aspect ratio, similar to those for symmet-
rical boudins (Fig. 9a). However, the estimated extensional
strain maintains relatively lower differences with the bulk
strain, as reflected from smaller stable values of d, e.g. 0.2
when Rb ¼ 1 (Fig. 9b). With increasing Rb d becomes large,
however remaining less than that of symmetrical boudins
(Figs. 8a and 9b, Table 1a).

In simple shear experiments objects, with aspect ratios less
than 8 produced asymmetric boudins. For Ro ¼ 6, rectangular
boudins (Rb < 4) underwent rotation and displacement, giving
rise to dilational asymmetric boudinage with synthetic slip. The
d values of these structures are large (>0.5, Fig. 10a), as com-
pared to asymmetrical boudins in pure shear (0.15, Fig. 9b,
Table 1). The shape of boudins also influences the d factor
(Fig. 10a,b). For example, when Ro ¼ 6 and Rb ¼ 2, the stable
value of d appears to be nearly 1 for rectangular shape, which
decreases close to 0.7 when the shape becomes rhombic. The
sense of slip is an additional factor in determining d, where an-
tithetic slip boudinage involves lower departures relative to that
with synthetic slip (Fig. 10b, Table 1b).

3.4. Analysis with planar asymmetric boudins

In pure shear, the estimated extension differed little with
the actual extension in model. With decrease in Rb, this differ-
ence is further reduced (Fig. 11a). Their departure factor d ap-
proached a stable value, as in the other two types of boudinage
(Fig. 11b). However, this is very low (<0.1), for example
d ¼ 0.03 for Rb ¼ 0.4 (Table 1a).

In simple shear, antithetic slip boudinage better tracks the
bulk extension (d < 0.2, Fig. 11c) in respect to synthetic slip
boudinage (d > 0.5, Fig. 11c, Table 1b). Furthermore, the two
types show contrasting relations between d and Rb. d is directly
proportional to Rb when inter-boudin slip is antithetic, whereas
the relation is inverse in case of synthetic slip. It may be noticed
that planar boudinage with both synthetic and antithetic slip in-
volves d larger than that in pure shear (Table 1a,b).

4. Boudinage in finite element models

4.1. Modelling approach

We simulated boudinage structures in two-dimensional
finite-element models (Lloyd and Ferguson, 1981; Ramsay
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and Lisle, 2000; Treagus and Lan, 2004). Visco-elastic rheol-
ogy with the following constitutive equation was considered in
the modeling (cf. Passchier and Druguet, 2002).

de

dt
¼ 1

2m

ds

dt
þ s

2h
; ð3Þ

where e and s are the instantaneous strain and stress respec-
tively, and m and h are the Maxwell shear modulus and viscosity
respectively. The finite element models were developed using
ANSYS (version 9.0) software. Employing the operation
mode in structural mechanics of this software, we modeled sym-
metrical and planar asymmetric type boudins in the following
manner. We took a rectangular region (Region 2) with length
and width dimensions several times that of the boudinage object
(Fig. 12), described as Region 1 in the foregoing description.
Region 1 was then segmented by taking a number of narrow
zones (Region 3) to form boudins. A model therefore consists
of three regions: Region 1 (boudin), Region 2 (matrix) and
Region 3 (inter-boudin space) (cf. Passchier and Druguet, 2002).

Table 1

Summary of experimental data

Boudin types Ro Rb Stable

d value

(a) Pure shear

Torn symmetric 6 1 0.31

1.5 0.38

2 0.64

3 w1.23

8 1 0.24

2 0.36

4 w0.63

10 1 0.13

2 0.18

2.5 0.41

5 w0.99

Dilational asymmetric 6 1 0.21

1.5 0.32

2 0.62

3 0.84

Planar asymmetric 2.4 0.4 0.09

0.5 0.04

(b) Simple shear

Boudin types Ro Rb Stable

d value

Torn symmetric 8 4 w0.7

Dilational asymmetric Synthetic slip Rectangular 6 1 w0.58

2 w1

3 w1.2

Rhombic 6 1 0.35

2 w0.63

3 w1.01

Antithetic slip 6 1 0.23

2 0.56

3 0.98

Planar asymmetric Synthetic slip 2.4 0.4 0.67

0.5 0.56

Antithetic slip 2.4 0.4 0.19

0.5 0.26

w indicates approximate stable values of d.
 Implementation of the constitutive relation (Eq. (3)) in the
finite element code requires inputs of the bulk modulus of ma-
terials in addition to shear modulus and viscosity (cf. Passchier
and Druguet, 2002). The bulk modulus of a region has been
calculated utilizing the shear modulus and the Poisson’s ratio
(Table 2). The viscosity of Region 1 was chosen 500 times that
of Region 2 so that the boudins would not undergo large inter-
nal deformation in the flowing matrix (Region 2). Region 3
was assigned with a low viscosity, simulating separation zones
in the boudinaged layer. We employed the technique of free
mesh generation in finite element models (Fig. 13), where
the mesh concentration was different in the three different re-
gions (Table 2). Models were deformed either in pure shear or
simple shear. During the deformation, boudins did not remain
strictly rigid, as in the physical experiments.

To achieve the necessary deviatoric stress for generating
a pure shearing deformation, we applied compressive and ten-
sile stresses of equal magnitude at the model boundaries
(Fig. 12). Model dimensions were taken much larger than
that of objects to achieve nearly a homogeneous strain at the
model boundaries. The sides of the model were 32 times the
width of object. It was verified that for this model dimension
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the boundaries of model remained virtually straight for a finite
bulk quadratic strain less than 3, and the overall change in the
model shape was close to that of pure shear. Bulk finite strain in
the model was increased in successive steps at constant stresses
at the model boundaries. Simple shear experiments in finite el-
ement models were performed employing shear displacements
at the four boundaries of models. The run time was set to
achieve strain rates in the range of 10�7/s (Table 2). At each
step, the nodal displacements at the boundaries of Region 1
and Region 2 were obtained from model runs, and a relation
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dinage strain (lb) for planar asymmetric boudins in pure shear. (c) Plots show-

ing the influence of inter boudin slip on the departure factor d in simple shear.

Note that boudinage with synthetic slip involves larger difference with the bulk

strain relative to that with antithetic slip.
between the bulk extension in the model and that in the boudin-
aged object was determined.

4.2. Model results

For pure shear, the variation of lb with lm deviates from the
lm ¼ lb line, indicating that the boudins record less extension
than the host (Fig. 14a). This difference is larger for large as-
pect ratios of boudins, as with the analogue experiments. On
the other hand, the variation for planar asymmetric boudinage
show relatively little departures from the lm ¼ lb line. Finite
element models thus indicate that the extensional strain deter-
mined from asymmetric boudins will be close to the bulk strain,
as revealed from physical experiments. We estimated the de-
parture factors for both symmetric and planar asymmetric
structures as a function of lb. d values tend to assume a stable
value with increasing lb, and are approximately consistent with
the experimental data (Fig. 14b,c). However, physical models
show slightly lower d values. This difference is probably due
to differences in the configurations of physical and finite ele-
ment models. In case of physical model, the objects had a
three-dimensional geometry, which is considered in two di-
mensions in case of finite element models. Moreover, inter-
boudin spaces in finite element models were completely filled
with a material, which in case of physical models were gaps,
partly filled by the matrix material.

Finite element models run in simple shear show that planar
asymmetric boudinage with antithetic slip maintains lower dif-
ferences from the actual bulk strain, as observed in physical
model experiments (Fig. 15a). The value of the departure fac-
tor d is much smaller compared to that involving synthetic
slip, which approximately follows our experimental findings
(Fig. 15b).

In summary, finite element models reveal that planar asym-
metric boudinage tracks the bulk extension more closely com-
pared to symmetric boudinage, as observed in physical models.
Secondly, the departure factor for given boudin geometry tends
to assume a stable value, which approximately matches with
that of physical models.

5. Discussion

5.1. Practical use of boudinaged objects in
strain analysis

Boudinaged objects, such as fossils, large mineral grains
and clasts in deformed rocks can be used for determination
of extensional strain (Ramsay, 1967). Previous studies as
well as our experimental results show that boudinaged objects
of finite length do not exactly track the bulk extensional strain.
Ramsay and Huber (1983) have described boudinaged struc-
tures of elongate amphibole crystals hosted in mica schist con-
taining recrystallized quartz grains (Fig. 6.13B, p. 101, Ramsay
and Huber, 1983). The quartz grains are strongly flattened
defining a prominent fabric. The dominant aspect ratio of flat-
tened quartz grains is estimated about two. Assuming their ini-
tial shape to be equant, the ratio can be taken as a measure of
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Fig. 12. Model parameters and boundary conditions used for finite element modeling of boudinage structure in pure and simple shear.
bulk strain in the bulk medium. Considering a plane strain con-
dition, the bulk quadratic elongation thus appears in the order
of 2. Extension obtained from displaced amphibole boudins
is estimated to be 1.2. The departure factor d is thus 0.65, which
is large and comparable to that observed in our pure shear ex-
periments. However, natural boudins show somewhat higher
values of d compared to that shown by experimental ones of
similar geometry. This difference may result from factors
such as bulk deformation condition, non-synchronous develop-
ment of fractures in amphibole crystals, etc. To analyze the de-
parture factor for simple shear we used boudinage structures of
granite mylonites from a brittle-ductile shear zone in the Pen-
insular Gneiss, south India (Fig. 16). The mylonites contain
boudinaged feldspar pophyroclasts in a plastically deformed
quartz-rich matrix. We estimated extensional strains from
boudinaged feldspar grains, and compared it with that obtained
from the flattened shapes of recrystallized quartz grains. Bou-
dinaged porphyroclasts always show a difference between bou-
dinage strain and the actual bulk extension, as observed in
physical experiments. The departure factor estimated for nearly
symmetrical boudins is 0.74 when the object and the boudin
aspect ratios are 1.28 and 0.66 respectively (Fig. 16a). Dila-
tional asymmetric structures (Fig. 16b; average Rb ¼ 1.08
and Ro ¼ 2.18) with synthetic slip show d factor in the order
of 0.45. The initial aspect ratio of the structures is lower
than those simulated in physical experiments. However, the de-
parture factor is consistent with the trend of variation obtained
from experimental runs for different Ro values. Dilational
asymmetric boudins (Fig. 16c; Ro z 5, Rb z 2.6) show depar-
ture factor d ¼ 1.06. It may be noted that the order of the
Table 2

Physical parameters considered in finite element modeling

Material properties Regions Bulk Modulus (kPa) Shear Modulus (kPa) Viscosity (kPa s) Density (kg/m3)

Region 1 (Boudin) 2 � 108 1.2 � 108 5 � 1018 3 � 106

Region 2 (Matrix) 2 � 107 1.2 � 107 9.996 � 1015 3 � 106

Region 3 (Inter boudin material) 2 � 106 1.2 � 106 9.996 � 1015 3 � 106

Mesh type Free Mesh (Numbers- Region 1: 19e22 � 102, Region 2: 8e14 � 103, Region 3: 3e8 � 102)

Boundary condition Bulk deformation Pressure (kPa) Displacement (m) Time (s) Stain rate (s�1)

Pure shear 2 � 105 e 8 � 108 3.5 � 10�7

Simple shear (Sinistral) e u ¼ gy, v ¼ 0 8 � 108 3.5 � 10�7
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Fig. 13. Close views of finite element models showing initial objects and corresponding symmetric (upper) and planar asymmetric (lower) boudinage structures in

pure shear.
departure factor is consistent with that of boudins of similar ge-
ometry in physical experiments under simple shear (Fig. 10a).

These examples support the contention that boudinage
strain underestimates bulk strain. We gave an effort to refine
the strain gauge by quantifying the difference as a function
of geometrical and kinematic parameters. We cite an example
below to address this issue. Ramsay and Huber (1983) present
a strain analysis using quadratic elongations of differently ori-
ented boudinaged belemnites. The aspect ratios of initial bel-
emnites (Section 6.4, Fig. 6.8 of Ramsay and Huber, 1983) are
estimated in the range of 7 to 10, whereas those of individual
boudins fall in the range of 1.25 to 1.45. According to our
analysis, the stable value of the departure factor d correspond-
ing to this boudin geometry would be around 0.2 for both pure
and simple shear types of bulk deformation. The departure
value is small, and the extensional strains determined from
belemnites are therefore close to the actual bulk strain. How-
ever, a more precise value of the finite quadratic elongations
could be obtained considering the departure factor in the fol-
lowing equation: lm ¼ (1 þ d) lb. It follows from the expe-
rimental results that quadratic elongation measured from
belemnites will lead to a better approximation of the bulk
extension if they are multiplied by a factor 1.2.

5.2. Limitations in experiments

In our experiments the objects were placed on the surface
of pitch slabs, keeping their third dimension (i.e. the dimen-
sion along boudin axis) inside pitch. This dimension was about
0.5 times the initial thickness of object. The third dimension of
object was constant in all the experiments, and the experi-
ments attempted to show influence of the length to thickness
ratio of object in the difference between boudinage strain
and the actual bulk extension. In our study it has not been
shown how the three-dimensional shape can influence the de-
parture factor d. To generalize the value of d for different types
of boudins we need to advance the experimental study consid-
ering a range of 3D shapes of objects.

Based on different experimental runs, our study intends to
show that d factor will attain a stable value with increasing
boudinage strain (lb). However, in some of the experiments,
especially with large boudin aspect ratios (Rb), lb required



771N. Mandal et al. / Journal of Structural Geology 29 (2007) 759e773
for reaching the stable values were not achieved, as the runs
were stopped at large model deformations (e.g. lm > 4e5).
It may be noted that, for a given lm the boudinage strain
(lb) drops with increasing Rb. The experimental data in these
cases thus demonstrate approximate stable values of d, as in-
dicated in Table 1.

We measured the initial length of object by taking the dis-
tance between two extreme end points of the object along the
length dimension. The method was employed to account the
maximum length occupied by the object along the extension
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direction. Secondly, this method is convenient for fieldwork,
as the edges of objects in geological situations may be irregular
and the boudins may not be perfectly arranged along a straight
line. In case of asymmetric type boudins, we determined the
departure factor considering the lengths along the central
line, and compared with that obtained from the maximum
length technique. The difference estimated considering the
length in these two methods always remains small (Fig. 17).
We preferred the maximum length technique as it involves
lower values of the departure factor d.

6. Conclusions

(1) Extensional strain determined from boudinage struc-
tures is less than the actual bulk strain, and the difference is
a function of initial aspect ratio of boudinaged objects, aspect
ratio of boudins and the type of boudinage. The difference
tends to attain a stable value with increasing boudinage strain.
The stable value is larger for larger boudin aspect ratio,
whereas it has an inverse relation with initial object aspect
ratio.
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(2) Torn symmetric type of boudins shows the largest dif-
ference between boudinage strain and the actual bulk exten-
sion, whereas the planar asymmetric type involves the
lowest difference.

Fig. 16. Granite mylonites showing boudinaged feldspar porphyroclsts (F)

within a matrix of recrystallized quartz grains (Q) and mica (M). Scale

bar ¼ 100 mm.
(3) For any boudin type, the difference between boudinage
strain and bulk extension in simple shear is larger than that in
pure shear.

(4) In simple shear antithetic slip boudinage better tracks
the bulk extension compared to synthetic slip boudinage.

(5) Planar asymmetric boudins appear to be more accurate
strain indicators.
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